Почему приливы и отливы?

Содержание

Приливы

Уровень поверхности океанов и морей периодически, приблизительно два раза в течение суток, изменяется. Эти колебания называются приливами и отливами. Во время прилива уровень океана постепенно повышается и достигает наивысшего положения. При отливе уровень постепенно падает до наинизшего. При приливе вода течет к берегам, при отливе — от берегов.

Приливы и отливы — это стоячие волны. Они образуются вследствие влияния таких космических тел, как Луна и Солнце. По законам взаимодействия космических тел наша планета и Луна взаимно притягивают друг друга. Лунное притяжение столь велико, что поверхность океана как бы выгибается ему навстречу. Луна движется вокруг Земли, и за ней «бежит» по океану приливная волна. Дойдет волна до берега — вот и прилив. Пройдет немного времени, вода вслед за Луной отойдет от берега — вот и отлив. По тем же всеобщим космическим законам приливы и отливы образуются и от притяжения Солнца. Однако приливообразующая сила Солнца в связи с его удаленностью значительно меньше лунной, и если бы не было Луны, то приливы на Земле были бы в 2,17 раз меньше. Объяснение приливообразующих сил впервые было дано Ньютоном.

Приливы отличаются друг от друга продолжительностью и величиной. Чаще всего в течение суток происходит два прилива и два отлива. На островных дугах и побережьях Восточной Азии и Центральной Америки наблюдается один прилив и один отлив в течение суток.

Величина приливов еще более разнообразна, чем их период. Теоретически один лунный прилив равен 0,53 м, солнечный — 0,24 м. Таким образом, самый большой прилив должен иметь высоту 0,77 м. В открытом океане и у островов величина прилива довольно близка к теоретической: на Гавайских островах — 1 м, на острове Святой Елены — 1,1 м; на островах Фиджи — 1,7 м. У материков величина приливов колеблется от 1,5 до 2 м. Во внутренних морях приливы очень незначительны: в Черном — 13 см, в Балтийском — 4,8 см. Средиземное море считается бесприливным, но около Венеции приливы бывают до 1 м. Наиболее крупными можно отметить следующие приливы, зарегистрированные в Мировом океане:

В Атлантическом океане в заливе Фанди (США) прилив достиг высоты 16-17 м. Это самый большой показатель прилива на всем земном шаре.

На севере Охотского моря в Пенжинской губе высота прилива достигла 12-14 м. Это самый большой прилив у берегов России. Однако приведенные выше показатели приливов являются скорее исключением, чем правилом. В преобладающем большинстве пунктов измерений уровня приливов они невелики и редко превышают 2 м.

Значение приливов очень велико для морского судоходства, устройства портов. Каждая приливная волна несет огромный запас энергии.

Алексей Бондарев

Исследователи NASA и нескольких американских университетов заявили о том, что на полюсах Луны таятся большие ледники. Что это означает для глобальных планов человечества по освоению космоса?

Исследователи из университета Гавайских островов, университета Брауна и Исследовательского центра NASA в Кремниевой долине опубликовали исследование, в котором содержатся подтверждения того, что на южном и северном полюсах Луны есть ледники.

Иными словами, вода в замороженном состоянии. Это первое свидетельство того, что на Луне есть вода.

Как было сделано открытие?

Открытие стало возможным благодаря инструменту сопоставления минералогии Луны M3, который был запущен в 2008-м на индийском корабле Chandrayaan-1.

Аппарат собирал данные об отражающих свойствах веществ на поверхности Луны и о способах поглощения ими инфракрасного света, что позволило ученым различать жидкую воду, пар или лед.

Идея такого рода исследования давно витала в воздухе, рассказывает Лесли Гертш, геолог из университета штата Миссури. И оно действительно показывает, что на Луне с высокой вероятностью есть вода, подчеркивает Гертш, и весьма вероятно, в больших количествах.

Почему воду не обнаружили раньше?

Собственно, раньше воду не очень-то активно искали.

Многие ученые в принципе отвергали перспективы таких поисков. Луна, кусок камня возрастом 4,5 млрд лет, переживает весьма резкие перепады температур, которые приводят к испарению жидкостей. А отсутствие атмосферы способствует тому, что солнечные ветры уносят с поверхности Луны любые газы, которые могут там возникать. Иными словами, вода в нетвердом состоянии там просто не может существовать.

Однако, на протяжении десятилетий некоторые ученые предполагали, что в некоторых местах на Луне могут существовать так называемые «холодные ловушки”.

Именно такая теория в конечном итоге и получила подтверждение. По словам ученых, твердая вода находится в самым холодных и укромных местах — в тени кратеров.

Самая высокая температура в этих местах составляет -120°C, поскольку солнечный свет практически не достигает этих мест.

На южном полюсе воды больше — она в замерзшем виде скрывается прямо в кратерах. На северном полюсе воды меньше. Точнее, ее меньшие залежи разбросаны шире, чем на южном полюсе.

Откуда на Луне вода?

Исследователи предполагают, что ледники могут быть очень редкими и остались с древних времен.

Много ли на Луне воды?

Пока сложно сказать. По мнению Гертша, отмеченные скопления в тенях кратеров могут быть как «верхушкой айсберга”, так и группой «маленьких айсбергов”.

«Нам нужно отправить туда исследовательский аппарат, — убежден Гертш. — Нам нужно отправиться туда и просверлить эти участки, чтобы посмотреть, сколько там воды”.

Что означает находка?

При достаточном количестве льда на поверхности, вода может быть ресурсом для будущих экспедиций или даже колонизации Луны.

Луна — самый близкое к Земле небесное тело. И — единственное, на которое люди уже высаживались.

Отсутствие воды всегда было одним из ключевых аргументов против освоения Луны.

Теперь же картина меняется.

«Наличие воды на Луне меняет перспективы ее освоения, — говорит Ангел Аббуд-Мадрид, директор центра космических исследований Геологической школы штата Колорадо.

А какую роль сыграет вода на Луне?

Лед на поверхности Луны представляет собой довольно легкую добычу. И полученные таким образом запасы воды не просто обеспечат астронавтов питьем.

Вода может быть расщеплена на кислород и водород. Т.е. речь идет о гораздо более важном ресурсе — ракетном топливе.

Возможность производить ракетное топливо не только на Земле, а и на Луне открывает новые перспективы в освоении космоса.

«Фактически, это будет первый шаг в построение космической экономики”, — констатирует Аббуд-Мадрид.

Фактически, Луна может стать первым форпостом Земли в космическом пространстве. И может сыграть ключевую роль в реализации многих ранее заявленных космических стратегий. Например, в плане Джеффа Безоса по перемещению мировой промышленности за пределы Земли.

Или в плане освоения Марса, о котором мечтает Илон Маск.

Как можно добывать воду на Луне?

Это большая проблема.

Как мы говорили выше, само существование воды на Луне долгое время было под вопросом из-за условий окружающей среды. Вода в жидком виде на поверхности существовать не может — она незамедлительно испарится.

Следовательно, если будет поставлена задача добывать воду из лунных ледников, это нельзя делать открытым методом. Растопив ледник, мы сразу же его уничтожим.

По мнению некоторых исследователей, предстоит создать что-то вроде больших палаток, внутрь которых с помощью гигантских зеркал будут направляться потоки солнечного света. Они растопят лед, а палатки не позволят воде испариться.

  • Читайте также: Вода на полюсах Луны

ПРИЛИВЫ И ОТЛИВЫ, периодические колебания уровня воды (подъемы и спады) в акваториях на Земле, которые обусловлены гравитационным притяжением Луны и Солнца, действующим на вращающуюся Землю. Все крупные акватории, включая океаны, моря и озера, в той или иной степени подвержены приливам и отливам, хотя на озерах они невелики.

Самый высокий уровень воды, наблюдаемый за сутки или половину суток во время прилива, называется полной водой, самый низкий уровень во время отлива – малой водой, а момент достижения этих предельных отметок уровня – стоянием (или стадией) соответственно прилива или отлива. Средний уровень моря – условная величина, выше которой расположены отметки уровня во время приливов, а ниже – во время отливов. Это результат осреднения больших рядов срочных наблюдений. Средняя высота прилива (или отлива) – осредненная величина, рассчитанная по большой серии данных об уровнях полных или малых вод. Оба этих средних уровня привязаны к местному футштоку.

Вертикальные колебания уровня воды во время приливов и отливов сопряжены с горизонтальными перемещениями водных масс по отношению к берегу. Эти процессы осложняются ветровым нагоном, речным стоком и другими факторами. Горизонтальные перемещения водных масс в береговой зоне называют приливными (или приливо-отливными) течениями, тогда как вертикальные колебания уровня воды – приливами и отливами. Все явления, связанные с приливами и отливами, характеризуются периодичностью. Приливные течения периодически меняют направление на противоположное, тогда как океанические течения, движущиеся непрерывно и однонаправленно, обусловлены общей циркуляцией атмосферы и охватывают большие пространства открытого океана.

В переходные интервалы от прилива к отливу и наоборот трудно установить тренд приливного течения. В это время (не всегда совпадающее со стоянием прилива или отлива) вода, как говорят, «застаивается».

Приливы и отливы циклически чередуются в соответствии с изменяющейся астрономической, гидрологической и метеорологической обстановкой. Последовательность фаз приливов и отливов определяется двумя максимумами и двумя минимумами в суточном ходе.

Объяснение происхождения приливообразующих сил.

Хотя Солнце играет существенную роль в приливо-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны. Степень воздействия приливообразующих сил на каждую частицу воды, независимо от ее местоположения на земной поверхности, определяется законом всемирного тяготения Ньютона. Этот закон гласит, что две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению масс обеих частиц и обратно пропорциональной квадрату расстояния между ними. При этом подразумевается, что чем более масса тел, тем больше возникающая между ними сила взаимного притяжения (при одинаковой плотности меньшее тело создаст меньшее притяжение, чем большее). Закон также означает, что чем больше расстояние между двумя телами, тем меньше между ними притяжение. Поскольку эта сила обратно пропорциональна квадрату расстояния между двумя телами, в определении величины приливообразующей силы фактор расстояния играет значительно бóльшую роль, чем массы тел.

Гравитационное притяжение Земли, действующее на Луну и удерживающее ее на околоземной орбите, противоположно силе притяжения Земли Луной, которая стремится сместить Землю по направлению к Луне и «приподнимает» все объекты, находящиеся на Земле, в направлении Луны. Точка земной поверхности, расположенная непосредственно под Луной, удалена всего на 6400 км от центра Земли и в среднем на 386 063 км от центра Луны. Кроме того, масса Земли в 81,3 раза больше массы Луны. Таким образом, в этой точке земной поверхности притяжение Земли, действующее на любой объект, приблизительно в 300 тыс. раз больше притяжения Луны. Распространено представление, что вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромный вес.

Тем не менее океаны, моря и большие озера на Земле, будучи крупными жидкими телами, свободны перемещаться под действием силы бокового смещения, и любая слабая тенденция к сдвигу по горизонтали приводит их в движение. Все воды, не находящиеся непосредственно под Луной, подчиняются действию составляющей силы притяжения Луны, направленной тангенциально (касательно) к земной поверхности, как и ее составляющей, направленной вовне, и подвергаются горизонтальному смещению относительно твердой земной коры. В результате возникает течение воды из прилегающих районов земной поверхности по направлению к месту, находящемуся под Луной. Результирующее скопление воды в точке под Луной образует там прилив. Собственно приливная волна в открытом океане имеет высоту лишь 30–60 см, но она значительно увеличивается при подходе к берегам материков или островов.

За счет перемещения воды из соседних районов в сторону точки под Луной происходят соответствующие отливы воды в двух других точках, удаленных от нее на расстояние, равное четверти окружности Земли. Интересно отметить, что понижение уровня океана в этих двух точках сопровождается повышением уровня моря не только на стороне Земли, обращенной к Луне, но и на противоположной стороне. Этот факт тоже объясняется законом Ньютона. Два или несколько объектов, расположенные на разных расстояниях от одного и того же источника тяготения и подвергающиеся, следовательно, ускорению силы тяжести разной величины, перемещаются относительно друг друга, поскольку ближайший к центру тяготения объект сильнее всего притягивается к нему. Вода в подлунной точке испытывает более сильное притяжение к Луне, чем Земля под ней, но Земля, в свою очередь, сильнее притягивается к Луне, чем вода, на противоположной стороне планеты. Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной – обратной. Первая из них всего на 5% выше второй.

Благодаря вращению Луны по орбите вокруг Земли между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Интервал между кульминациями последовательных прилива и отлива ок. 6 ч 12 мин. Период продолжительностью 24 ч 50 мин между двумя последовательными приливами называется приливными (или лунными) сутками.

Неравенства величин прилива.

Приливо-отливные процессы очень сложны, поэтому, чтобы разобраться в них, необходимо принимать во внимание многие факторы. В любом случае главные особенности будут определяться: 1) стадией развития прилива относительно прохождения Луны; 2) амплитудой прилива и 3) типом приливных колебаний, или формой кривой хода уровня воды. Многочисленные вариации в направлении и величине приливообразующих сил порождают разницу в величинах утренних и вечерних приливов в данном порту, а также между одними и теми же приливами в разных портах. Эти различия называются неравенствами величин прилива.

Полусуточный эффект.

Обычно в течение суток благодаря основной приливообразующей силе – вращению Земли вокруг своей оси – образуются два полных приливных цикла. Если смотреть со стороны Северного полюса эклиптики, то очевидно, что Луна вращается вокруг Земли в том же направлении, в каком Земля вращается вокруг своей оси, – против часовой стрелки. При каждом следующем обороте данная точка земной поверхности вновь занимает позицию непосредственно под Луной несколько позже, чем при предыдущем обороте. По этой причине и приливы и отливы каждый день запаздывают приблизительно на 50 мин. Эта величина называется лунным запаздыванием.

Полумесячное неравенство.

Этому основному типу вариаций присуща периодичность примерно в 143/4 суток, что связано с вращением Луны вокруг Земли и прохождением ею последовательных фаз, в частности сизигий (новолуний и полнолуний), т.е. моментов, когда Солнце, Земля и Луна располагаются на одной прямой. До сих пор мы касались только приливообразующего воздействия Луны. Гравитационное поле Солнца также действует на приливы, однако, хотя масса Солнца намного больше массы Луны, расстояние от Земли до Солнца настолько превосходит расстояние до Луны, что приливообразующая сила Солнца составляет менее половины приливообразующей силы Луны. Однако, когда Солнце и Луна находятся на одной прямой как по одну сторону от Земли, так и по разные (в новолуние или полнолуние), силы их притяжения складываются, действуя вдоль одной оси, и происходит наложение солнечного прилива на лунный. Подобным же образом притяжение Солнца усиливает отлив, вызванный воздействием Луны. В результате приливы становятся выше, а отливы ниже, чем если бы они были вызваны только притяжением Луны. Такие приливы называются сизигийными.

Когда векторы силы притяжения Солнца и Луны взаимно перпендикулярны (во время квадратур, т.е. когда Луна находится в первой или последней четверти), их приливообразующие силы противодействуют, поскольку прилив, вызванный притяжением Солнца, накладывается на отлив, вызванный Луной. В таких условиях приливы не столь высоки, а отливы – не столь низки, как если бы они были обусловлены только силой притяжения Луны. Такие промежуточные приливы и отливы называются квадратурными. Диапазон отметок полных и малых вод в этом случае сокращается приблизительно в три раза по сравнению с сизигийным приливом. В Атлантическом океане как сизигийные, так и квадратурные приливы обычно запаздывают на сутки по сравнению с соответствующей фазой Луны. В Тихом океане такое запаздывание составляет лишь 5 ч. В портах Нью-Йорк и Сан-Франциско и в Мексиканском заливе сизигийные приливы на 40% выше квадратурных.

Лунное параллактическое неравенство.

Период колебаний высот приливов, возникающий за счет лунного параллакса, составляет 271/2 суток. Причина этого неравенства состоит в изменении расстояния Луны от Земли в процессе вращения последней. Из-за эллиптической формы лунной орбиты приливообразующая сила Луны в перигее на 40% выше, чем в апогее. Этот расчет справедлив для порта Нью-Йорк, где эффект пребывания Луны в апогее или перигее обычно запаздывает примерно на 11/2 суток относительно соответствующей фазы Луны. Для порта Сан-Франциско разница в высотах приливов, обусловленная нахождением Луны в перигее или апогее, составляет только 32%, и они следуют за соответствующими фазами Луны с запаздыванием на двое суток.

Суточное неравенство.

Период этого неравенства составляет 24 ч 50 мин. Причины его возникновения – вращение Земли вокруг своей оси и изменение склонения Луны. Когда Луна находится вблизи небесного экватора, два прилива в данные сутки (а также два отлива) слабо различаются, и высоты утренних и вечерних полных и малых вод весьма близки. Однако с увеличением северного или южного склонения Луны утренние и вечерние приливы одного и того же типа различаются по высоте, и, когда Луна достигает наибольшего северного или южного склонения, эта разница максимальна. Известны также тропические приливы, называемые так из-за того, что Луна находится почти над Северным или Южным тропиками.

Суточное неравенство существенно не влияет на высоты двух последовательных отливов в Атлантическом океане, и даже его воздействие на высоты приливов мало по сравнению с общей амплитудой колебаний. Однако в Тихом океане суточная неравномерность проявляется в уровнях отливов втрое сильнее, чем в уровнях приливов.

Полугодовое неравенство.

Его причиной является обращение Земли вокруг Солнца и соответствующее изменение склонения Солнца. Дважды в год в течение нескольких суток во время равноденствий Солнце находится близ небесного экватора, т.е. его склонение близко к 0°. Луна также располагается вблизи небесного экватора приблизительно в течение суток каждые полмесяца. Таким образом, во время равноденствий существуют периоды, когда склонения и Солнца и Луны приблизительно равны 0°. Суммарный приливообразующий эффект притяжения этих двух тел в такие моменты наиболее заметно проявляется в районах, расположенных вблизи земного экватора. Если в то же самое время Луна находится в фазе новолуния или полнолуния, возникают т.н. равноденственные сизигийные приливы.

Солнечное параллактическое неравенство.

Период проявления этого неравенства составляет один год. Его причиной служит изменение расстояния от Земли до Солнца в процессе орбитального движения Земли. Один раз за каждый оборот вокруг Земли Луна находится на кратчайшем от нее расстоянии в перигее. Один раз в год, примерно 2 января, Земля, двигаясь по своей орбите, также достигает точки наибольшего приближения к Солнцу (перигелия). Когда эти два момента наибольшего сближения совпадают, вызывая наибольшую суммарную приливообразующую силу, можно ожидать более высоких уровней приливов и более низких уровней отливов. Подобно этому, если прохождение афелия совпадает с апогеем, возникают менее высокие приливы и менее глубокие отливы.

Методы наблюдений и прогноз высоты приливов.

Измерение уровней приливов осуществляется при помощи устройств различных типов.

Футшток

– это обычная рейка с нанесенной на нее шкалой в сантиметрах, прикрепляемая вертикально к пирсу или к опоре, погруженной в воду так, что нулевая отметка находится ниже наиболее низкого уровня отлива. Изменения уровня считывают непосредственно с этой шкалы.

Поплавковый футшток.

Такие футштоки используются там, где постоянное волнение или мелководная зыбь затрудняют определение уровня по неподвижной шкале. Внутри защитного колодца (полой камеры или трубы), вертикально установленного на морском дне, помещается поплавок, который соединен с указателем, закрепленным на неподвижной шкале, или пером самописца. Вода проникает в колодец сквозь небольшое отверстие, расположенное значительно ниже минимального уровня моря. Его приливные изменения через поплавок передаются на измерительные приборы.

Гидростатический самописец уровня моря.

На определенной глубине размещается блок резиновых мешков. По мере изменения высоты прилива (слоя воды) меняется гидростатическое давление, которое фиксируется измерительными приборами. Автоматические регистрирующие устройства (мареографы) также могут применяться для получения непрерывной записи приливо-отливных колебаний в любой точке.

Таблицы приливов.

При составлении таблиц приливов используются два основных метода: гармонический и негармонический. Негармонический метод всецело базируется на результатах наблюдений. Кроме того, привлекаются характеристики портовых акваторий и некоторые основные астрономические данные (часовой угол Луны, время ее прохождения через небесный меридиан, фазы, склонения и параллакс). После внесения поправок на перечисленные факторы расчет момента наступления и уровня прилива для любого порта является чисто математической процедурой.

Гармонический метод является отчасти аналитическим, а отчасти основан на данных наблюдений за высотами приливов, проводившихся в течение по меньшей мере одного лунного месяца. Для подтверждения этого типа прогнозов для каждого порта необходимы длительные ряды наблюдений, поскольку за счет таких физических явлений, как инерция и трение, а также сложной конфигурации берегов акватории и особенностей рельефа дна возникают искажения. Поскольку приливо-отливным процессам присуща периодичность, к ним применяется анализ гармонических колебаний. Наблюдаемый прилив рассматривается как результат сложения серии простых составляющих волн прилива, каждая из которых вызвана одной из приливообразующих сил или одним из факторов. Для полного решения используется 37 таких простых составляющих, хотя в некоторых случаях дополнительные компоненты сверх 20 основных пренебрежимо малы. Одновременная подстановка 37 констант в уравнение и собственно его решение осуществляется на компьютере.

Приливы на реках и течения.

Взаимодействие приливов и речных течений хорошо заметно там, где крупные реки впадают в океан. Высота приливов в бухтах, устьях рек и эстуариях может существенно возрастать в результате увеличения стока в маргинальных потоках, особенно во время половодий. Вместе с тем океанические приливы проникают далеко вверх по рекам в виде приливных течений. Например, на р.Гудзон приливная волна заходит на расстояние 210 км от устья. Приливные течения обычно распространяются вверх по реке до труднопреодолимых водопадов или порогов. Во время приливов течения в реках отличаются бóльшими скоростями, чем во время отливов. Максимальные скорости приливных течений достигают 22 км/ч.

Бор.

Когда вода, приходящая в движение под воздействием прилива большой высоты, ограничена в своем перемещении узким руслом, образуется довольно крутая волна, которая единым фронтом перемещается вверх по потоку. Это явление называется приливной волной, или бором. Такие волны наблюдаются на реках гораздо выше устьев, где сочетание силы трения и течения реки в наибольшей степени препятствует распространению прилива. Известно явление формирования бора в заливе Фанди в Канаде. Около Монктона (пров. Нью-Брансуик) р.Птикодиак впадает в бухту Фанди, образуя маргинальный поток. В малую воду его ширина 150 м, и он пересекает полосу осушки. Во время прилива стена воды протяженностью 750 м и высотой 60–90 см шипящим и бурлящим вихрем устремляется вверх по реке. Самый большой из известных боров высотой 4,5 м формируется на р.Фучуньцзян, впадающей в залив Ханьчжоу. См. также БОР.

Реверсивный водопад

(меняющий направление на противоположное) – это еще одно явление, связанное с приливами на реках. Типичный пример – водопад на р.Сент-Джон (пров. Нью-Брансуик, Канада). Здесь по узкому ущелью вода во время прилива проникает в котловину, расположенную выше уровня малой воды, однако несколько ниже уровня полной воды в этой же теснине. Таким образом, возникает преграда, перетекая через которую вода образует водопад. Во время отлива сток воды устремляется вниз по течению через суженный проход и, преодолевая подводный уступ, образует обычный водопад. Во время прилива проникшая в ущелье крутая волна обрушивается водопадом в вышележащую котловину. Попятное течение продолжается до тех пор, пока уровни воды по обе стороны порога не сравняются и не начнется отлив. Затем опять восстанавливается водопад, обращенный вниз по течению. Средний перепад уровня воды в ущелье составляет ок. 2,7 м, однако при самых высоких приливах высота прямого водопада может превысить 4,8 м, а реверсивного – 3,7 м.

Наибольшие амплитуды приливов.

Самый высокий в мире прилив формируется в условиях сильного течения в бухте Минас в заливе Фанди. Приливные колебания здесь характеризуются нормальным ходом с полусуточным периодом. Уровень воды во время прилива часто поднимается за шесть часов более чем на 12 м, а затем в течение последующих шести часов понижается на ту же величину. Когда воздействие сизигийного прилива, положение Луны в перигее и максимальное склонение Луны приходятся на одни сутки, уровень прилива может достигать 15 м. Такая исключительно большая амплитуда приливо-отливных колебаний отчасти обусловлена воронкообразной формой залива Фанди, где глубины уменьшаются, а берега сближаются по направлению к вершине залива.

Ветер и погода.

Ветер оказывает существенное влияние на приливо-отливные явления. Ветер с моря нагоняет воду в сторону берега, высота прилива увеличивается сверх обычной, и при отливе уровень воды тоже превосходит средний. Напротив, при ветре, дующем с суши, вода сгоняется от берега, и уровень моря понижается.

За счет повышения атмосферного давления над обширной акваторией происходит понижение уровня воды, так как добавляется наложенный вес атмосферы. Когда атмосферное давление возрастает на 25 мм рт. ст., уровень воды понижается приблизительно на 33 см. Понижение атмосферного давления вызывает соответствующее повышение уровня воды. Следовательно, резкое падение атмосферного давления в сочетании с ветром ураганной силы способно вызвать заметный подъем уровня воды. Подобные волны, хотя и называются приливными, на самом деле не связаны с воздействием приливообразующих сил и не обладают периодичностью, характерной для приливо-отливных явлений. Формирование упомянутых волн может быть сопряжено либо с ветрами ураганной силы, либо с подводными землетрясениями (в последнем случае они называются сейсмическими морскими волнами, или цунами).

Использование энергии приливов.

Разработаны четыре метода использования энергии приливов, но наиболее практичным из них является создание системы приливных бассейнов. При этом колебания уровня воды, связанные с приливо-отливными явлениями, используются в системе шлюзов так, что постоянно поддерживается перепад уровней, позволяющий получать энергию. Мощность приливных электростанций непосредственно зависит от площади бассейнов-ловушек и потенциального перепада уровней. Последний фактор, в свою очередь, является функцией амплитуды приливо-отливных колебаний. Достижимый перепад уровней, безусловно, наиболее важен для производства электроэнергии, хотя стоимость сооружений зависит от площади бассейнов. В настоящее время крупные приливные электростанции действуют в России на Кольском п-ове и в Приморье, во Франции в эстуарии р.Ранс, в Китае близ Шанхая, а также в других районах земного шара.

Приливы и отливы на Земле

Луна, являясь ближайшим к Земле и большим по массе космическим телом, оказывает на нее наибольшее гравитационное воздействие, вызывая приливы и отливы во всех оболочках Земли: литосфере, атмосфере, гидросфере и биосфере. Приливообразующая сила – равнодействующая силы притяжения Луны и центробежной силы, возникающей при вращении системы Земля-Луна вокруг барицентра. На Земле одновременно существуют два прилива в ближайшей точке к Луне и наиболее удаленной и два отлива в точках, расположенных на угловом расстоянии 90° от линии Луна – Земля. Поскольку Луна обращается вокруг Земли с запада на восток и за солнечные сутки (24 ч) проходит по своей орбите 13,2°, то лунные сутки – промежуток времени между двумя последовательными одноименными кульминациями Луны на любом меридиане Земли – оказываются длиннее солнечных суток на 50 мин и равны 24 ч 50 мин. В течение лунных суток на Земле бывает два прилива и два отлива. Полный приливной цикл, т. е. изменение уровня воды в Мировом океане, где приливы и отливы наиболее выразительны, между последовательными приливами (или отливами), завершается за 12 ч 25 мин, а между приливом и отливом проходит 6 ч 12 мин 30 с.

Приливообразующие силы луны (по Л.К. Давыдову и др.)

Одновременно с лунными приливами бывают и солнечные приливы с полным периодом 24 ч, но они в 2,2 раза слабее лунных в связи с большой удаленностью Солнца от Земли. Лунные и солнечные приливы складываются в новолуние и полнолуние (сизигийные приливы) и вычитаются в первой и последней четверти (квадратурные приливы). Первые примерно на 40% выше вторых.

Общепланетарное значение приливных волн заключается в том, что, перемещаясь с востока на запад вслед за видимым передвижением Луны, они тормозят осевое вращение Земли и удлиняют сутки (на 0,0016 сек. в столетие). При этом изменяется не только фигура Земли за счет медленного уменьшения полярного сжатия, но и лик Земли. Благодаря приливам все оболочки Земли непрерывно пульсируют. Они вызывают ежесуточные вертикальные смещения земной поверхности до 50 см, полусуточные колебания приземного атмосферного давления, изменяют условия органической жизни в прибрежных частях Мирового океана, формируют берега, т. е. участвуют во многих природных процессах, а также оказывают влияние на хозяйственную деятельность приморских стран.

«Волны — это голоса прилива. А прилив — сама жизнь.
Он приносит пищу морским обитателям и выносит корабли
в море. Он — пульс океана.»
Тамора Пирс

Чтобы научиться хорошо серфить, каждый сёрфер должен уметь понимать океан. Он должен знать, что такое свелл, откуда берутся волны, как на них влияет ветер и многое другое. Среди таких знаний, в том числе, находятся знание о приливах с отливами. Чтобы кататься в лучшее время на лучших волнах, нужно разобраться, каким образом прилив может изменить волны, какой уровень воды идеально подойдёт для определённого спота и в какое время стоит ожидать этот уровень.
В этой статье мы разберёмся, что такое приливы и отливы, откуда они берутся, какие бывают, что влияет на уровень прилива, и как определить, в какое время какой уровень воды стоит ожидать. Ну а в конце мы напишем, какую практическую ценность для сёрфера имеют приливы.

Причина

Главной причиной того, что уровень воды каждый день в мировом океане то повышается, то понижается, является гравитация. В первую очередь, это гравитация Луны. Так как Луна находится ближе всего к Земле среди всех остальных небесных тел, её влияние самое большое. На втором месте находится Солнце. И, хоть оно находится гораздо дальше от нас, чем Луна, притяжение Cолнца всё равно ощущается, так как оно значительно больше по размеру любой планеты в Солнечной системе.
Однако, сила гравитации Cолнца по отношению к Земле составляет лишь 46 процентов от лунной. Кстати, есть ещё одно небесное тело, гравитация которого влияет на землю, это Венера! Да-да, однако, сила её притяжения составляет лишь 0.001% от силы Солнечной гравитации.

Силу притяжения Луны и Солнца называют приливной силой. Она не достаточно велика, чтобы действовать на твёрдые тела (хотя и их Луна способна растягивать до 30см!), однако, значительному её влиянию поддаётся вода в Мировом Океане, жидкое состояние которой позволяет уровню воды изменяться на несколько метров.

Время приливов и отливов

Время обращения Луны вокруг Земли — лунные сутки — составляет примерно 24 часа 50 минут. В большинстве мест на Земле полудневной прилив, то есть за лунные сутки мы имеем два прилива, два отлива. Так как лунные сутки длинней земных, то каждый день время приливов и отливов смещается. Однако, есть несколько мест на Земле, где за сутки вода приливает только один раз. Такими местами являются Южно-китайское море, Мексиканский залив и другие.

Сизигийный и квадратурный приливы

Многие, кто бывал на океане больше двух недель замечали, что в одни дни отлив может быть очень сильным, а в другие — не так заметен. Дело в том, что в зависимости от того, в какой фазе сейчас находится Луна, перепад между максимальной и минимальной водой может различаться.

Во время полной и новой Луны, то есть когда Солнце, Луна и Земля встают в одну линию, перепад максимальный. Такой прилив называется «сизигийный». Данное явление происходит потому, что приливные силы Солнца и Луны складываются.
А во время первой и третьей четверти лунного цикла, то есть когда Луна освещается Солнцем наполовину, перепад воды будет минимальный. Это явление называется квадратурным приливом.

Также на высоту прилива влияет ещё и траектория движения Луны и Солнца. Дело в том, что Луна двигается вокруг Земли не по кругу, а по эллипсу. Поэтому, в одно время Луна находится ближе к Земле, в другое — дальше. Когда сизигийный отлив выпадает на период, когда Луна находится в ближайшей к Земле точке (это происходит раз в 7,5 лунных циклов), наблюдается очень высокий прилив.

Если же во время сизигийного прилива ещё и Земля приближается максимально близко к Солнцу (её орбита тоже выглядит как эллипс), тогда прилив будет ещё выше. Это происходит каждые 18,6 лет.

Откуда второй прилив

Вы можете спросить, если Луна притягивает воду только с одной стороны, тогда почему приливов и отливов в сутки два, с одной и с другой стороны планеты?

Честно говоря, этот вопрос не давал мне покоя, до тех пор пока я не прочитал замечательную книгу Surf Science автора Tony Butt.

Второй прилив появляется из-за двух факторов. Первый — разница в силе притяжения Луны между одной стороной Земли и другой. Второй — центробежная сила, возникающая во время вращения Земли.

С первым фактором, мне кажется, должно быть всё понятно сразу. Луна находится ближе к одной стороне Земли, чем к другой. Логично предположить, что сила гравитации будет различаться. Так оно и есть. Если мы возьмём силу гравитации Луны в центре Земли за основу, то тогда на её поверхности, ближайшей к Луне, сила гравитации нашего спутника будет на 3.4% больше, чем в центре, и слабее на 3.2% с противоположной стороны нашей планеты.

Теперь поговорим про второй фактор. Что за центробежная сила и откуда она берется. Выше я упоминал о вращении Земли, но имел ввиду не её вращение вокруг собственной оси, но вращение вокруг Луны.
Большинство из нас знает со школы, что Луна вращается вокруг Земли. Но, на самом деле, они обе вращаются вокруг общего центра своих масс, который находится на расстоянии 4.5 тысяч километров от центра Земли. То есть, этот центр находится внутри радиуса Земли, который составляет чуть больше 6.3 тысячи километров. Следовательно, Земля и Луна вращаются вокруг этого центра с одинаковой скоростью.

Представьте, что вы надели резинку для волос на карандаш и начали крутить её. Резинка вытянется поперёк движения. Примерно то же самое происходит и с водой на Земле. Благодаря этому вращению Земли вокруг Луны, возникает центробежная сила, которая оттягивает воду океана с Земли.

Взгляните на рисунок ниже. Синими стрелками показана сила притяжения Луны. Красными — центробежная сила. Пурпурные стрелки показывают направление действия сил, сложенных вместе.

Почему в разных местах Земли высота прилива различается

Если вы бывали на побережьях в разных странах, возможно вы замечали, что где-то отлив заметен очень сильно, например, на Бали, а где-то уровень воды во время полной и малой воды почти не отличается, например на Мальдивах.
Теперь мы знаем, что сила гравитации ни Луны, ни Солнца значительно не изменяются, то есть в одном месте на поверхности планеты максимальный прилив и минимальный отлив будут всегда примерно одинаковыми. Однако, при всём этом, где-то высота отлива составляет пол-метра, где-то три, а где-то и целых шестнадцать (это место называется Залив Фанди в Канаде — на фото ниже).

Причина этому — рельеф дна. Прилив можно рассматривать как огромную волну. Если вспомнить о том, откуда возникает волна, — она начинает подниматься, когда глубина становится меньше определённой отметки, — тогда становится всё понятней. Соответственно, высота прилива зависит от глубины океана. Чем меньше глубина, тем «выше» становится приливная волна, и тем больше становится перепад между максимальной водой и минимальной. Если бы на нашей планете не было бы суши, тогда вокруг планеты двигалось бы только две приливные волны. Однако, из-за континентов и сложной формы дна океанов, приливных волн больше.

Взгляните на карту. На ней цветом выделены места с различной высотой прилива, где тёмно-красный — максимальная высота, голубой — минимальная. Точки, где сходятся белые линии, называются амфидромическими. В них перепад между приливом и отливом нулевой. Чем дальше от этой точки, тем выше будет амплитуда колебания прилива. Рядом с этими точками можно увидеть чёрную стрелку, она показывает, в какую сторону двигается приливная волна. Белыми линиями очерчены зоны, где прилив находится в одной фазе, между каждой линией разница чуть больше часа. Вокруг каждой точки двенадцать таких фаз. Время прохождения приливной волны через все эти зоны равно половине лунных суток.

Как определить высоту и время прилива

Всё вышеописанное может показаться слишком сложным, для того, чтобы все эти движения описать математическими формулами. Это действительно сложно, но возможно. Благодаря этим формулам, высоту прилива и отлива можно просчитать на многие годы вперёд. В каждом порту можно найти специальные таблицы или графики, которые называются тайд-чартами. Ниже вы найдёте два вида тайд-чартов.

В первом варианте по горизонтальной оси отмечаются дни месяца, по вертикальной — часы в сутках. На пересечениях столбцов находятся данные об уровне воды в этот конкретный день и конкретный час.

Второй вариант взят с сайта сёрф-прогнозов magicseaweed.com, который знаком всем сёрферам. Здесь прилив показан графиком, рядом с которым указывается время максимальной и минимальной воды.

Зачем это знать сёрферам

Сёрферам информация об уровне воды в океане или море нужна для того, чтобы понимать, будет ли работать нужный спот в то или иное время и как он будет это делать. Характер волны зависит от глубины воды на споте. Чем она больше, тем более пологой и медленной становится волна. Чем меньше глубина — тем волна более резкая, быстрая. Соответственно, в местах, где приливы с отливами заметны, характер волны на споте будет довольно сильно изменяться в зависимости от уровня воды. Таким образом некоторые волны могут работать только на отливе, потому что там слишком глубоко, чтобы волна вставала на приливе, а какие-то — только на приливе, потому что там слишком мелко.

Взять например спот Кудета на Бали. При среднем уровне свелла, здесь можно нормально посерфить только когда уровень воды будет меньше 1 метра. При этом лучшие волны будут на минимальной воде в сизигийный отлив. На максимальной воде волна вообще перестаёт там вставать.

А вот на Филиппинах, на острове Сиаргао, на споте Клауд 9, когда воды много, волна всё равно остаётся резкой и даже слегка потрубливает. А когда вода отливает, глубина становится по пояс, и тогда волна начинает очень сильно трубить, становится супер-быстрой и опасной.

Поэтому, если вы собираетесь покататься на новом споте, предварительно узнайте о том, при каком уровне воды там лучшие волны. Эту информацию можно узнать в интернете на одном из многочисленных сайтов с описаниями спотов, или узнать на берегу у бывалых сёрферов.

Ещё один фактор, на который влияют приливы и отливы — это течения. Чем больше перепад воды, тем быстрее она приходит и уходит, то есть течения становятся сильнее. При этом, максимальная скорость течений приходится на середину периода между отливом и приливом. То есть, если сегодня минимальная вода в 12 часов дня, а максимальная в 6, то в промежуток между 2 и 4 часами дня вода будет отливать быстрее всего и скорость течения будет выше. А во время пересменки движения воды, то есть в 12 или 6 часов, течение замедляется.

Кроме того, существует поверье, что волны во время повышения уровня воды становятся лучше. Мол, движение воды во время прилива направлено в ту же сторону, что и волны, и поэтому они более ровные. И наоборот, при отливающей воде волны становятся хуже. Никаких достоверных научных данных, подтверждающих этот факт нет, однако, зачастую, волны действительно лучше на приливающей воде.

Надеюсь, что эта статья оказалась полезной для вас, что вы узнали немного нового и что эта информация поможет выбирать вам время с лучшими волнами!

Иллюстрации автора

Записи созданы 7201

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх